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e Introduction / motivation
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What we want to do today

Aim of the lecture of today is to:

@ Discuss the evolution of renewable energy prices in the last years/decades, with
the support of some graphs;

@ Embed this analysis in a more quantitative framework: i.e., using time series;
@ Give then an overview / recap of the main features of time series;

@ Follow this overview with a practical example: prices of Solar PV modules, from
1983 to 2019;

@ For such an example, show the implementation in Python of the analysis we will
discuss.
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The decay of renewable energy costs in last years

The following slides are based on the report Renewable power generation costs in
2020 from the International Renewable Energy Agency (IRENA), available at

https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020

@ In the decade 2010 to 2020, solar and wind power technologies have become
more and more competitive.
@ The global weighted average of levelized cost of electricity fell:

o 85% for solar photovoltaics;

@ 68% for concentrating solar power;
@ 56% for onshore wind;

o 48% for offshore wind,

@ Not only renewables energies are now competing with fossil fuels, but are
undercutting them.
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LCOE and PPA/auction prices for solar PV, onshore wind, offshore wind

and CSP, 2010-2023
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Note: The thick lines are the global weighted average LCOE, or auction values, by year. For the LCOE data, see Figure ES2 note. The band

that crosses the entire chart represents the fossil fuel-fired power generation cost range.
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Some comparison between coal-fired power plants and renewable

energy

In 2021:

@ In Europe, coal-fired power plant operating costs are above the costs of new solar
PV and onshore wind (including the cost of CO2 prices).

@ In the United States, between 77% and 91% of the existing coal-fired capacity has
operating costs that are estimated to be higher than the cost of new solar or wind
power capacity.

@ In India, the figure is between 87% and 91%.
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Global weighted-average total installed costs by technology, 2010-2020
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Total installed costs of onshore wind projects and global

weighted-average, 1983-2020
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Solar PV module prices

We now consider a dataset that we are going to use along the whole lecture: Global
average price of solar photovoltaic (PV) modules, measured in 2019 US dollars per
Watt, from 1983 to 2019.

Source: Our World in Data. The dataset is downloadable also in Excel format at the
following link: https://ourworldindata.org/grapher/solar-pv-prices

Yg(a)réy average price of photovoltaic modules, 2019 US dollars per Watt

1985 1990 1995 2000 2005 2010 2015 2020
Year
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Towards time series

The figure at the last slide clearly exhibits a decreasing trend.

But: can we analyze it further? More quantitatively? Can we make predictions on the
price evolution in next years?

Time series analysis!
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What are time series?

Think about the evolution of prices of Solar PV modules:

@ If you look at the past (last year, last 5 years, last n years) you can observe a list of
recorded values, each one corresponding to one day;

@ If you think about the future, it is hard to forecast the values they will take. No
deterministic phenomenon, but random!

@ However, you can observe the past in order to try to forecast the future.
@ Very loosely speaking, this is the objective of time series analysis.
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Time series: look at the past and try to forecast the future

Suppose your point of observation is the dashed line: you can see one trajectory in the
past, but of course more than one trajectory is possible in the future.
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Example of a time series: stock and bond returns
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Source: Guy Metcalfe, The Mathematics of Market Timing.
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A second example: towards trend and seasonality

Number of monthly air passengers in thousands from 1949 until 1960. Source: Box,
Jenkins, and Reinsel, Time Series Analysis, Forecasting and Control
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Some goals of time series analysis

When we analyze time series, we might want to:
@ Forecast: predict future values of the time series;

@ Identify patterns: it is assumed that the data consist of a systematic pattern
(usually a set of identifiable components) and random noise (error) which usually
makes the pattern difficult to identify.
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Q Time series decomposition
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Trend and seasonality: a first intuition

Think again at the plot we have seen few minutes ago. Here it is again.

1950 1952 1954 1956 1958 1960

— Monthly Passengers

One can clearly note:
@ Anincreasing trend;
@ A seasonality effect: there are some peaks at some nearly constant time intervals.
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Trend, seasonality, cyclicality

Long-term increase or decrease in the data, which can be linear or non-linear.

Seasonality

A seasonal pattern occurs when a time series exhibits rises and falls that are of a fixed
frequency: for example, the time of the year or the day of the week.

v

Cyclicality

A cycle occurs when a time series exhibits rises and falls that are not of a fixed
frequency.
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Example of trend: electricity prices

Average monthly electricity wholesale prices in selected countries in the European
Union (EU) from January 2020 to January 2022. Source: Statista 2022.
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Example of trend: again renewable energy prices, Solar PV module

prices

Yggr(l)y average price of photovoltaic modules, 2019 US dollars per Watt

17.5 A

1985 1990 1995 2000 2005 2010 2015 2020
Year
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Example of trend renewable energy prices: Solar PV module prices

@ Note: the previous plot and the following analysis from this dataset has been
produced in Python.

@ Commands besides downloading the data and save the prices as an array named
prices:

import matplotlib.pyplot as plt
years = range (1983,2020)
plt.plot (years, prices,’-0o’)
plt.title(’Yearly average price of photovoltaic modules,
2019 US dollars per Watt’)
plt.xlabel (' Year’)
plt.ylabel ('Price’)
plt.show ()
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Components of a time series

A time series has four components:
@ Trend
@ Seasonality
@ Cyclicality
@ Random fluctuations.

One typically tries to express the value of the observations as a function of the four
components, and isolate the four components.
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How to estimate trend and seasonality?

@ Plotting the prices data can already give you a nice insight about trend and
seasonality.

@ This can provide a very useful base for further analysis (for example, to have an
idea of the number of periods in case of seasonality effects).

@ What if you want to go more into details? The next topic is how to estimate the
trend component with moving averages (MA).

@ Once you estimate the trend, you can detect the seasonality from the detrend data
just computing the average realizations for each period (for example month, day of
the week, quarters, etc).
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0 Estimation of the trend: Moving Averages (MA)
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Moving averages smoothing

@ The idea is to estimate the trend at ¢ by computing the average of y close to .

@ Observations that are nearby in time are also likely to be close in value: the
average eliminates some of the randomness in the data, leaving a smooth trend
component.

@ The number m of data (i.e., of times) that are taken into consideration in the
average is called the order of the average. It is an odd number.

@ A moving average of order m is denoted by m-MA.
@ An m-MA can be written as

1 k
T = — E i
t m kyt+J7
J=—

where k = -1, so that m = 2k + 1.
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How to choose the period m?

@ Moving averages are used to estimate the trend, and in particular to get rid of
seasonality effects.

@ For this reason, it makes sense to choose m equal (or multiple of) the periods in
the seasonality.

@ For example, if you observe a phenomenon that exhibits a weekly seasonality
effect, you can choose m = 7: this rules out the seasonality effect because at
every day you consider the whole week of observations close to that day.
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2 x m moving averages

@ We have said two things about the period m: it is odd, and it should be equal to
the number of periods in case of seasonality effects.

@ So: what if such a number n of periods is even?

@ Idea: take m = n + 1, and make the first and last observation weight 1/2 with
respect to the others.

@ Such MA are called 2 x m MA.

@ For example, in case of quarterly data, a nice option is to choose a 2 x 4 MA:
- 1 1 1 1 1
T, = Y2 + Vi + ik + i + gyr+2

With this choice, all the quarters are weighted the same, because ¢t — 2
corresponds to the same quarter as ¢ + 2.
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Weighted moving averages

@ 2 x m MA is the most used and famous example of weighted MAs.
@ In general, a weighted m-MA can be written as

k
Ty = > ayees,

j=—k

m— k
where k = ™1 and 37, a; = 1.

@ Choosing a; = % for all j we are back to the classical MA.
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0 Autocorrelation analysis
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Autocorrelation of a time series

@ Autocorrelation refers to the correlation of a time series with its own past and
future values.

@ It can be seen as the similarity between observations as a function of the time lag
between them.

@ It can also be called lagged correlation.

@ Positive autocorrelation might be considered as a specific form of a tendency for a
system to remain in the same state from one observation to the next.

@ Negative autocorrelation is instead typical of mean-reverting processes.
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Autocorrelation function

@ Let (y¢):=1,..., v be the values we observe of a time series.
@ We introduce the autocorrelation function (ACF) r by defining

_ Zi\,:k+1(yt - 'g)(ytfk - 17)
25:1(?# —7)?

where § = % Zjvzl y: is the average of the observed data.

@ That is: r(1) measures the correlation (i.e. the relationship) between y: and y:—1,
t=2,---,N, r(2) measures the correlation between y, and y;_»,t =3,..., N,
and so on.

r(k)

I
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Detecting trend and seasonality from the ACF

@ When a time series has a trend, shorter lags have large positive correlations
because observations close in time tend to have similar values.

@ When a time series has seasonality, the autocorrelations are larger for lags at
multiples of the seasonal frequency than for other lags.

@ When a time series has both trend and seasonality, a mixture of both the effects
can be observed.

@ A good way to look at this is to plot the ACF.
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Example: global average price of solar photovoltaic (PV) modules

Prices Autocorrelation
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Python code

from statsmodels.graphics.tsaplots import plot_acf

Andrea Mazzon

fig, axes = plt.subplots(l, 2)
axes[0] .plot (years, prices, '-0o’)
axes[0].set_title ('Prices’)
plot_acf (prices, ax=axes|[1l])
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Partial autocorrelation function (PACF)

@ Say we want to measure the correlation between y; and y;_».
@ If y, and y,—, are correlated, then y,_; and y;_» are also correlated (same lag).

@ Then y, and y:—» might be correlated simply because they are both connected to
yi—1, rather than because of any new information contained in y;_- that could be
used in forecasting y:!

@ Goal of using the partial autocorrelation function is to solve this issue.

@ A partial autocorrelation at lag &, k£ > 2, describes the correlation between y, and
yi—k, after removing the effect of the correlation of y; with yi—1,..., yt—k+1-

@ More formally, the PACF r? is defined by

_ Covariance(y, Yi—k|yt—1, - - - s Yt—k+1)
V/Variance (y—k|ye—1, - - -, Ye—rt1)Variance (ye|ye—1, - - -, Ye—k+1)

r?(k
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Example: global average price of solar photovoltaic (PV) modules
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Python code

from statsmodels.graphics.tsaplots import plot_pacf
fig, axes = plt.subplots(l, 2)
axes[0] .plot (years, prices, '-0o’)
axes[0] .set_title ('Prices’)
plot_pacf (prices, ax=axes[1l])
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e Stationarity of time series
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Definition of stationarity

@ A time series is stationary if its statistical properties (for example mean, variance,
autocorrelation, etc.) are all constant over time.

@ A stationary time series has no predictable patterns.
@ Time series with trends, or with seasonality, are not stationary.

@ Note: a time series with cyclic behaviour (but with no trend or seasonality) is
stationary! The cycles are not of a fixed period, so we cannot predict the future up
and downs (on average).

@ Time plots typically show a stationary time series to be roughly horizontal
(although some cyclic behaviour is possible), with constant variance.
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Stationary time series we have already seen: stock and bond returns
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A non-stationary time series we have already seen: number of monthly

airplanes passengers
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Do not confuse non-stationarity with autocorrelation!

A time series can be stationary and have non-zero autocorrelation, and be
non-stationary and have zero autocorrelation.

Let X be a random variable with standard normal distribution A/(0, 1). Then the series
y: = X for any ¢:

@ |s of course stationary;
@ |t has autocorrelation 1 for all the lags.

Consider now a sequence of independent random variables X; with normal distribution
N(0,4) for any i. Then the series y: = X for any ¢:

@ |s non-stationary (the variance depends on time);

@ It has autocorrelation 0 for all the lags (the random variables are independent).
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@ Consider time series of the form
Yt = aYi—1 + €, (1)

where ¢ is the so called error term, supposed to be stationary (white noise).
@ A unit root is said to exist in a time series y if a = 1in (2).
@ Such a series is stationary if and only if |a] < 1in (2).
@ That is, if a unit root is present, the time series is not stationary.
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Dickey-Fuller test

@ Consider again
Yt = QYs—1 + €.

@ The Dickey-Fuller test is a way to determine whether the above time series has a
unit root (in this case, it is not stationary). How does it work?

@ From the equation above, we have

Yt —Yim1 = QYs—1 + € — Ye—1 = PYe—1 + €,

with 3 = a — 1.
@ Introduce now the first difference operator A defined by Ay: := y+ — y:—1. Then
we have

Ay: = Byi—1 + €,
and a unit root is present if 8 = 0.
@ So the test boils down to a regression test with null hypothesis g = 0.
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The three version of the Dickey-Fuller test

There are three most well known versions of the test:

@ Test with white noise only:
Ay = Byi—1 + €,

@ Test with constant:
Ays = c1 + Pye—1 + €,

where ¢; € R.
@ Test with constant and deterministic time trend:

Ay = c1 + cot + Byi—1 + €,

where ¢1,c2 € R.
© The Augmented Dickey-Fuller adds lagged differences Ay;_; to these models.
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Example: global average price of solar photovoltaic (PV) modules

@ From the previous plots, it is clear that the time series of PV modules cannot be
stationary: clear decreasing trend, significant autocorrelation values also for large
lags.

@ One can also perform an Augmented Dickey-Fuller unit root test with Python, to
corroborate this strong feeling.

@ The null hypothesis of the ADF test is that the time series is non-stationary. So, if
the p-value of the test is bigger than the significance level (0.05) one we infer that
the time series is indeed not stationary.

@ We get a p-value of 0.644256: we cannot reject the null hypothesis!

@ One can also look at the Augmented Dickey Fuller statistics, defined as s%(w) sif it
is smaller (“more negative”) than some critical values, one can reject the null
hypothesis. This is not true in our case.
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Python code

from statsmodels.tsa.stattools import adfuller
resultsAdfTest = adfuller (prices)
print ("p-value: %f'% resultsAdfTest[1])
print ()
print (ADF Statistic: %f'% resultsAdfTest[0])
for key,value in resultsAdfTest[4].items () :
print (" %f'%s Critical value: %f'%f’ %f'% (key, value))
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Why to transform a non-stationary time series into a stationary one

@ A stationary series is relatively easy to predict: we simply predict that its statistical
properties will be the same in the future as they have been in the past.

@ For this reason, if we note that a time series is non-stationary, we want to apply
some transformation in order to get a stationary time series.

@ Then, once we predict the transformed series to have same properties in the future
as in the past, we transform back and get the properties of the original time series.

@ The most used transformation is called differencing.
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Differencing: a first intuition

The Google stock price is non-stationary, but the daily changes are stationary. Source:

Rob J Hyndman and George Athanasopoulos, Forecasting: Principles and Practice
(2nd ed).
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Differencing

@ Even if a time series is non-stationary, the series 3 of its changes, defined by
Y = Yeg1 — Y, t=1,...,T—1,

can be stationary.
@ This is typically true if the original time series exhibits trend but not seasonality.
@ If y has seasonality of period m but no trend, the series

Ut = Yt4m —Yt, t=1,....,T —m,

is typically stationary.

@ If y has both trend and seasonality, it is necessary to take both a seasonal
difference and a first difference (i.e., y++1 — y: as above) to obtain stationary data.

@ In case of strong trends, a double differencing might be necessary.
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e Autoregressive models
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Definition of autoregressive model

@ |dea: we forecast the next value of a time series using a linear combination of its
past values.

@ Formalized:

Yo =Cc+ P1Yi—1 + P2yi—2 + - + OpYi—p + €, (2)
where:
o pis called the order of the autoregressive model;
o the parameters o1, 2, ..., vp € R, possibly satisfying some stationarity conditions

(more on this later);
@ ¢ is the error component, the realization at time ¢ of a white noise time series: a time
series that shows no autocorrelation.

@ We refer to y defined in (2) as an AR(p) model: autoregressive model of order p.
@ We usually suppose autoregressive models to be stationary.
@ In this case, some constraints on the values of the parameters are required.
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AR(1) models

@ An AR(1) model is defined as
Yt =Cc+ p1Ys-1 + €.

@ ltis stationary if and only if —1 < ¢1 < 1.
@ The behaviour of an AR(1) model depends on ¢, and c. In particular:

e if p1 = 0, it is white noise (no autocorrelation);
e if o1 =1, it equivalent to a random walk (with drift if ¢ # 0);
e if ¢ < 0, it is mean reverting: it oscillates around the mean.
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AR(2) models

@ An AR(2) model is defined as
Yt = Cc+ P1Yt—1 + payi—2 + €.

@ ltis stationary if and only if —1 < @2 <1, o1 + 2 <1, 02 —p1 < 1.

@ Stationarity conditions for orders strictly bigger than 2 are much more complex to
derive. They can be computed with the help of the most common programming
tools, like R and Python.
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Plot of an AR(1) and of an AR(2) model

Source: Rob J Hyndman and George Athanasopoulos, Forecasting: Principles and
Practice (2nd ed).

@ On the left, AR(1) with y; = 18 — 0.8y;—1 + €.

@ On the right, AR(2) with y: = 8 + 1.3ys—1 — 0.7Tys—2 + €.

AR(1) AR(2)
250~
12- 225~
20.0
10-
175~
8-
15.0
0 20 40 60 80 100 ﬂ 20 40 60 80 100
Time Time

Andrea Mazzon Time series analysis with applications to green energy 58/90



o Moving average models
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Definition of moving average model

@ |dea: we forecast the next value of a time series using a linear combination of the
past errors.

@ Formalized:
Yt =C+ € +Vi1ee—1 + Yace—o + - -+ Pg€r—g, (3)
where:

@ ¢ is the order of the moving average model;

o the parameters 1,2, .. .,%4 € R, maybe satisfying some conditions (invertibility
conditions);

® ¢,¢4-1,...,€—q are realizations of a white noise time series: a time series that shows
no autocorrelation.

@ We refer to y defined in (3) as a MA(q) model: a moving average model of order g.

@ Note that each value of y can be thought as a weighted moving average of the
past g errors.
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Plot of a MA(1) and of an MA(2) model

Source: Rob J Hyndman and George Athanasopoulos, Forecasting: Principles and
Practice (2nd ed).

@ On the left, MA(1) with y; = 20 + €, + 0.8€;—1.

@ On the right, MA(2) with y; = e, — ;1 + 0.8€;—_2.
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© ARIMA models
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Non-seasonal ARIMA models: a combination between MA and AR

models with differencing

@ ARIMA is an acronym for Auto Regressive Integrated Moving Average: it is a
model for the differenced time series v’ where vy, := y; — ys_q, d > 1.

@ In particular, an ARIMA(p, d, ¢) model can be written as
yp=c+eyiog +o+ @pyé—p +Preg—1 4+ Pg€r—q + €,

with y; =yt — yi—a-
@ Note here that on the right hand side there are both lagged values of y and lagged
errors. In particular, we have:
@ an autoregressive part with order p;
@ a moving average part with order g.
@ The same stationarity and invertibility conditions that are used for autoregressive
and moving average models also apply to an ARIMA model.
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Particular cases of non-seasonal ARIMA models

Have in mind that an ARIMA(p, d, ¢) model can be written as
Yo =cF pryir + o+ @iy + Y161+ Yge—g + e

Some examples:
@ ARIMA(0, 0, 0): white noise
@ ARIMA(0, 1,0): random walk (with drift if ¢ # 0)
@ ARIMA(p,0,0): autoregressive of order p
@ ARIMA(0, 0, ¢): moving average of order q.
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Seasonal ARIMA models

@ We have only considered non-seasonal data when looking at ARIMA models.
@ But what if we have to handle seasonality?

@ We can include seasonal terms in the ARIMA models we have seen so far.
@ A seasonal ARIMA (SARIMA) model is denoted by ARIMA(p, d, q)(P, D, Q)m:

e m is the seasonality period;
e (P, D, Q) are the equivalent of (p, d, q) in the seasonality term.
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SARIMA models, formalized

How to write a SARIMA model

An ARIMA(p, d, q)(P, D, Q) model can be written as

D(B™)(B) (Yt — Yt—a — (Yt—m — Yt—d—m)) = ¥(B")Y(B)et,

where:
@ By, = yi—m and By; = yi—1;
@ $(B™)=1—-®,B™ — ... — dpB™;
@ p(B)=1—p1B— - — p,B?;
@ U(B™)=1—U;B™ —... - UoB™;
@ Y(B)=1—y1B— - —1,BY

An ARIMA(0,1,1)(0, 1, 1)4 model can be written as

Yo — Y1 — We—a — ye—s) = (1 — ©1B*)(1 — 41 B)e,
=(1— U1 B (et — Pree—1)
=€ —Pres—1 — Vier—a + V1 Vi€—5.
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Exogenous variables

@ ltis possible to include in our model also the (linear) effect of » exogenous
variables.

@ That is, we add to our model the linear term

r
§ aktha
k=1

where X is the value at time ¢ of the k-th exogenous variable.
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e How to choose the parameters of ARIMA models
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@ Let’s say we want to model a time series y with an ARIMA(p, d, ¢) model, i.e.,
Yr =c+ Q1Yo+ Ppli—p FPrec—1 + o+ Yger—q + €,

with 4} = y: — yi—a.
@ We have to get values for:
o the order of differencing d;
o the orders p and q of the autoregressive and moving average parts, respectively;
o the parameters ;, j =1,...,pand;,i=1,...,q.
@ We want to do this in such a way that fits well our time series.
@ The scheme is:

o First get d (looking at autocorrelations);
e then get p and ¢ (ACF and PACF plots, AIC criterion);
o finally get the parameters (Maximum likelihood estimation).

@ More details in the very next slides.
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Identifying the differencing order

@ We can let d be the lowest order of differencing such that the differenced series is
stationary.
@ In particular:
e the original series is stationary — no order of differencing is needed;
o the original series has a constant average trend — one order of differencing is
needed;
o the original series has a time varying average trend — two orders of differencing are
needed;
o usually, no more than two orders of differencing are needed.
@ An indicator of stationarity can be an autocorrelation function plot which decays
fairly rapidly to zero, either from above or below.

@ If instead the autocorrelations of the differenced time series are positive out to a
high number of lags (say 7/8 or more), then an higher order of differencing is
needed.

@ Practical rule of thumb: If the first lag autocorrelation is smaller than —0.5 this may
mean the series has been overdifferenced.

Andrea Mazzon Time series analysis with applications to green energy 70/90



Identifying p and ¢

We see two ways to estimate the orders p (autoregressive part) and ¢ (moving average
part) of our ARIMA model:

@ ACF and PACF plots;
@ AIC/BIC criterion.

Andrea Mazzon Time series analysis with applications to green energy 71/90



Identifying p and ¢ with ACF and PACF plots

@ Recall that:
@ An ACF plot shows the correlations between y and its k-lagged values for k = 1,2, .. ..
@ A PACF plot shows the correlations between y and its k-lagged values for k = 1,2, . ..,
after removing the effects of lags 1,2, ...,k — 1.
@ The ACF and PACF plots can be helpful in determining the value of p or ¢ if the
data are from an ARIMA(p, d, 0) or ARIMA(O0, d, g) model.
@ We can say that y is an ARIMA(p, d, 0) if we see that:

o the ACF is exponentially decaying or sinusoidal;
o there is a significant spike at lag p in the PACF, but none beyond lag p.

@ We can say that y is an ARIMA(0, d, q) if we see that:

o the PACF is exponentially decaying or sinusoidal;
o there is a significant spike at lag ¢ in the ACF, but none beyond lag p.
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AlIC and BIC

The Akaike information criterion (AIC) value for a general model is

AIC = 2k — 2In(L),

where & is the number of parameters in the model and L is the value of the likelihood
function of the model: the joint probability of the observed data as a function of the
model’s parameters.

The Bayesian information criterion (BIC) value for a general model is

BIC = kln(n) — 2In(L),

where k is the number of parameters in the model, n the total number of data we have
for the model and L is the value of the likelihood function of the model.

.

Choose the model that minimizes AIC or BIC.
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Choosing p and ¢ with AIC or BIC

AIC for ARIMA models

The AIC value for an ARIMA(p, d, ¢) model is
AIC(p,q) = 2(p+ g+ k+1) —2In(L),

where k =1ifc#0,k=0if ¢ = 0.

BIC for ARIMA models

The BIC value for an ARIMA(p, d, ¢) model where a number T of values is observed is

BIC(p,q) = (p+q+k+1)In(T) — 2In(L),

where k =1ifc#0,k=0ifc=0.
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Estimating the parameters of ARIMA(p, d, ) models

@ As afinal step, one needs to estimate the parameters ¢, 1, ..., ©p, 1, ..., ¥q.
@ These are typically estimated by maximum likelihood estimation (MLE).

@ This technique finds the values of the parameters which maximise the probability
of obtaining the data that we observe.
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Testing an ARIMA model

@ Once we have identified the values of the order of an ARIMA model (i.e., p,d, q)
and its parameters, we have to test the forecasts we get with our model.

@ We can do this by inspecting how well a model performs on new data, i.e., data
that were not used when fitting the model.

@ The size of the test set is typically about 20% of the total sample.
@ The forecast error at time ¢ is defined as

€t 1= Yt — flt,

where y, is the true value of the time series at ¢ and ¢ is the value forecasted by
the ARIMA model.

@ Call 7t the train set and let |7“**| be the number of its elements. Then the two
most common measures used to test an ARIMA model are:

1
mean absolute error: 7| Z let]
tethst

and

1
root mean squared error: \/thm' > (e

teTtest
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Example: Solar PV module prices

@ We now want to apply the procedure described before to the data of the solar PV
module prices.

@ As we have already seen, the series is not stationary (decreasing trend,
significantly positive autocorrelations also for large lags in the ACF plot, ADF test).

@ Then, we have to come up with a strictly positive differencing order d.

@ We look at the ACF plots: remember we want to choose the smallest order for
which the differenced series looks fairly stationary.

@ That is, the smallest order for which the differenced series has significantly
positive autocorrelations only until small lags.
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Example: Solar PV module prices. Choosing the differencing order

We choose d = 1: the third lag is already very close to zero. Another possible choice
would have also been d = 2.
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Example: Solar PV module prices. Choosing the differencing order.

Code

from statsmodels.graphics.tsaplots import plot.acf
import matplotlib.pyplot as plt
years = range (1983,2020)
yearsForFirstDiff = range (1984,2020)
yearsForSecondDiff = range(1985,2020)
fig, axes = plt.subplots (3, 2)
axes [0, 0].plot (years, prices)
axes [0, 0].set_title(’Original Series’)
plot_acf (prices, ax=axes[0, 1])
axes[l, O].plot(yearsForFirstDiff, diff (prices))
axes[l, 0O].set_title(’1st Order Differencing’)
plot_acf (diff (prices), ax=axes[l, 1])
axes[2, 0].plot (yearsForSecondDiff, diff(diff (prices)))
axes[2, 0].set_title(’2nd Order Differencing’)
plot_acf (diff (diff (prices)), ax=axes[2, 11])
plt.show ()
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Example: Solar PV module prices. Choosing the autoregressive order p

Look at the PACF plot of the differenced time series: there is a significant spike at lag 1,
but none beyond lag 1: we choose p = 1.

First order differencing Partial Autocorrelation
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Example: Solar PV module prices. Choosing the MA order ¢

Look at the ACF plot of the differenced time series: there is a significant spike at lag 1,
but none beyond lag 1 (the second one is below the significance area border): we
choose ¢ = 1.
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Example: Solar PV module prices. Recap and AIC test

@ For our dataset on the Solar PV module prices, we have then chosen an
ARIMA(1,1,1) model.

@ Actually, we can try to let Python itself find our parameters d, p, ¢, via AIC criterion.
@ We can do this by typing import pmdarima as pmd and then

autoarima-model = pmd.auto_arima (prices, start_p=1,
start_.g=1, trace=True)

@ Here start_p, start_qg are justthe values from which we want to start to test
the parameters.

@ In the next slide, we can see the output: also proceeding in this way the best
choice seems to be ARIMA(1,1,1).
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Example: Solar PV module prices. Results of AIC test

Performing stepwise search to minimize aic

ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=73.366, Time=0.13 sec
ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=97.404, Time=0.08 sec
ARIMA(1,1,0)(0,0,8)[0] intercept : AIC=76.351, Time=0.05 sec
ARIMA(O,1,1)(0,0,8)[0] intercept : AIC=76.278, Time=0.04 sec
ARIMA(0,1,0)(0,0,08)[0] : AIC=106.069, Time=0.02 sec
ARIMA(2,1,1)(0,0,0)[0] intercept : AIC=75.314, Time=0.07 sec
ARIMA(1,1,2)(0,0,0)[0] intercept : AIC=75.294, Time=0.08 sec
ARIMA(0,1,2)(0,0,0)[0] intercept : AIC=74.531, Time=0.05 sec
ARIMA(2,1,0)(0,0,0)[0] intercept : AIC=74.668, Time=0.04 sec
ARIMA(2,1,2)(0,0,8)[0] intercept : AIC=77.268, Time=0.15 sec
ARIMA(1,1,1)(0,0,0)[0] : AIC=74.534, Time=0.04 sec

Best model: ARIMA(1,1,1)(0,0,0)[0] intercept
Total fit time: 0.766 seconds
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Example: Solar PV module prices. Getting the parameters of our

ARIMA(1,1,1) model

@ Once we have chosen d, p and ¢, we have to estimate the parameters ¢, and 1
such that we can express our series as

Yi = P1yi—1 + re—1 + €,

with v ==y — ye—1.
@ In Python, we can write
from statsmodels.tsa.arima.model import ARIMA
and then
model = ARIMA (prices, order=(1,1,1))

model_fit = model.fit ()
print (model_fit.summary ())

@ In the next slide, we can see what we get: ar.L1 and ma.L1 are the AR term ¢
and the MA term 1, respectively, whereas sigma?2 is the variance of the error
term.
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Example: Solar PV module prices. Getting the parameters of our

ARIMA(1,1,1) model

SARIMAX Results

Dep. Variable: y No. Observations: 37
Model: ARIMA(1, 1, 1) Log Likelihood -34.267
Date: Tue, 07 Jun 2022 AIC 74.534
Time: 08:16:05 BIC 79.285
Sample: @ HQIC 76.192
- 37
Covariance Type: opg
coef std err z P>|z| [0.025 0.975]
ar.L1 0.6210 0.156 3.979 0.000 0.315 0.927
ma.Ll 0.4995 0.228 2.195 0.028 0.854 0.945
sigma2 0.3788 0.087 4.366 0.000 0.209 0.549
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Example: Solar PV module prices. Testing the model looking at the

residuals

In order to test our ARIMA(1, 1, 1) model, we can look at the residuals and their density

Residuals Density of residuals
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Example: Solar PV module prices. Testing the model looking at the

residuals. Code

residuals = pd.DataFrame (model_fit.resid)
fig, ax = plt.subplots(l,2)
residuals.plot (title="Residuals", ax=ax[0])
residuals.plot (kind="kde’, title=’Density of residuals’,
ax=ax[1])
plt.show ()
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Main reference

Rob J Hyndman and George Athanasopoulos, Forecasting: Principles and Practice
(2nd ed). OTexts, 2018.
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Thank you for your attention!

For any question write to

mazzon@math.Imu.de
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